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Abstract. Essential proteins are indispensable in the development of organisms
and cells. Identification of essential proteins lays the foundation for the discov-
ery of drug targets and understanding of protein functions. Traditional biologi-
cal experiments are expensive and time-consuming. Considering the limitations
of biological experiments, many computational methods have been proposed to
identify essential proteins. However, lots of noises in the protein-protein inter-
action (PPI) networks hamper the task of essential protein prediction. To reduce
the effects of these noises, constructing a reliable PPI network by introducing
other useful biological information to improve the performance of the prediction
task is necessary. In this paper, we propose a model called Ess-NEXG which
integrates RNA-Seq data, subcellular localization information, and orthologous
information, for the prediction of essential proteins. In Ess-NEXG, we construct
a reliable weighted network by using these data. Then we use the node2vec tech-
nique to capture the topological features of proteins in the constructed weighted
PPI network. Last, the extracted features of proteins are put into a machine learn-
ing classifier to perform the prediction task. The experimental results show that
Ess-NEXG outperforms other computational methods.

Keywords: Essential proteins · RNA-Seq data · Subcellular localization ·
Weighted protein-protein interaction network · Node embedding · XGBoost

1 Introduction

Essential proteins are very important in organisms and play a crucial role in the life
process [1]. If the absence of a certain protein would lead to organisms to become dis-
ability or death, it can be said that this protein is essential [2]. Identification of essential
proteins not only helps us to deepen the understanding of the life activities of cells
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but also provides a theoretical basis for the study of the pathogenesis of complex dis-
eases and the discovery of drug targets [3, 4]. Thus, it is important for biologists to
identify essential proteins. Conventional methods for the identification of essential pro-
teins are biological experiments including RNA interference [5], conditional knockout
[6], and single-gene knockout [7]. However, these experimental methods are expensive
and time-consuming. Therefore, it is necessary to identify essential proteins by using
computational approaches.

The rule of Centrality-Lethality, which indicates that nodes with high connectivity
in the networks tend to be essential proteins, has been proposed in 2001 [8]. After
that, several computational methods have been developed to identify essential proteins.
These computational methods can be roughly divided into two classes: topology-based
and machine learning-based methods. There are many topology-based methods, such
as Degree Centrality (DC) [9], Betweenness Centrality (BC) [10], Closeness Centrality
(CC) [11], Subgraph Centrality (SC) [12], Eigenvector Centrality (EC) [13], Information
Centrality (IC) [14], and Local Average Connectivity (LAC) [15]. These methods focus
on node centrality and provide a decent performance to identify essential proteins.

With the development of high-throughput sequencing technology, an increasingnum-
ber of protein data are available to obtain. These protein data lay the foundation for the
identification of the essential proteins. Many researchers integrated PPI network and
biological information to improve the performance of the essential protein identifica-
tion. The representative methods are PeC [16], UDoNC [17], ION [18], and CoTB [19].
Besides, many traditional machine learning algorithms are applied to this task. These
machine learning algorithms include support vector machine (SVM) [20], Naïve Bayes
[21], genetic algorithm [22], and decision tree [23]. Recently, deep learning techniques
also have been applied to essential protein prediction and achieve good performance.
Zeng et al. [24] proposed a novel computational framework to predict essential proteins
based on deep learning techniques which can automatically learn features from three
kinds of biological data. Zeng et al. also proposed a method named DeepEP [25, 26]
which integrates PPI network and gene expression profiles.

Both in topology-based and machine learning-based methods, PPI networks play
an important role. Studies showed that there are many false positive and false negative
edges in PPI networks [27, 28], which can influence the performance of essential protein
prediction [29]. Thus, to reduce the effects of these noises, it is imperative to construct
a reliable weighted network to improve the performance of essential protein prediction
by using other biological information. In this study, we used three kinds of biologi-
cal data: RNA-Seq data, the subcellular localization information, and the orthologous
information.

In this paper, we propose a novel computational framework named Ess-NEXG to
identify essential proteins. First, to eliminate the noises in the PPI network, the PPI
network is weighted by integrating RNA-Seq data, subcellular localization information,
and orthologous information. Different from using score function in traditional com-
putational methods, the weights of edges are calculated by dimension reduction from
these data. Second, the network representation learning technique is used to learn the
topological features of each protein in the weighted PPI network. Finally, the extracted
features are used as the input of XGBoost model to identify potential essential proteins.
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The effectiveness of Ess-NEXG is validated on the PPI network of saccharomyces cere-
visiae (S. cerevisiae) [30]. Comparedwith the current topology-basedmethods including
BC, CC, EC, IC, LAC, NC, SC, PeC, SPP [31], WDC [32], RSG [33] and NIE [34],
Ess-NEXG achieves a better performance. Besides, Ess-NEXG also outperforms other
machine learning-based methods.

2 Materials and Methods

2.1 Data Source and Preprocessing

In this study, we usedmultiple biological data to identify essential proteins: PPI network,
RNA-Seq data, subcellular localization information, and orthologous information. These
biological data are widely used in the prediction of essential proteins. The PPI network
dataset is downloaded from BioGRID database. After the removal of self-cycle interac-
tions and discrete nodes, there are 5,501 proteins and 52,271 interactions in the dataset.
Proteins and interactions represent nodes and edges in the PPI network, respectively.

The essential proteins are downloaded from Four databases: MIPS [35], SGD [36],
DEG [37], OGEE [38]. After integrating information of essential proteins in the four
databases, the dataset contains 1285 essential proteins. The RNA-Seq data is collected
from the NCBI SRA database by Lei et al. [39]. This dataset contains gene expression
data of 7108 proteins. The subcellular localization information is downloaded from the
knowledge channel of COMPARTMENTS database [40]. The orthologous information
is gathered from InParanoid database [41].

2.2 Constructing Weighted PPI Network

Formally, the PPI network is described as an undirected graph G (V, E) consisting of a
set of nodes V = {v1, v2, . . . , vn} and edges E = {

e
(
vi, vj

)}
. A node vi ∈ V represents

a protein and an edge e
(
vi, vj

) ∈ E represents the interaction between protein vi and vj.
As mentioned above, the PPI network plays an indispensable role in essential protein
prediction. However, recent studies showed that there are some noises in the current
PPI network, which can affect the identification performance. In order to improve the
performance of the essential protein prediction, it is necessary to construct a reliable PPI
network.

In this paper, we used RNA-Seq data, subcellular localization information, and
orthologous information to weigh the PPI network to reduce the effects of noises. The
three types of biological data represent the co-expression of two interacting proteins, the
spatiality of proteins, and the conservatism of proteins, respectively. Thus, they can be
used to filter the noises and calculate the weight of interacting proteins.

2.2.1 Obtain Better Representation with Principal Component Analysis

We have three different types of biological data. If we combine them directly, each
protein has a 24-dimensional feature vector. However, the three kinds of biological data
are from different sources and have the following properties:
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1. The ranges of values in the three types of biological data vary a lot. The range of
values in RNA-Seq data is from zero to tens of thousands; the values in subcellular
localization information are binary (0 and 1); the range of values in orthologous
information is from 0 to 99.

2. The subcellular localization information is very sparse; the RNA-Seq data and
orthologous information are dense.

3. The dimensionality of three kinds of data is different. To order to extract useful
features, we used principal component analysis (PCA) to reduce the dimensionality
and obtain better representations of proteins.

It is important to find a good way that combines three kinds of biological data
for calculating how strong two proteins interact. In consideration of the differences in
those three kinds of biological data, we use PCA to reduce the dimension of the 24-
dimensional vector to get a better protein representation vector. PCA is a useful tool
for feature extraction. The samples are projected from high-dimensional space into low-
dimensional space by PCA through linear transformation, which can obtain a dense
protein vector and be more suitable for calculating the weight of edges. After the steps
of PCA, we can obtain a dense vector which is a better representation.

2.2.2 Calculate the Strength of Interacting Proteins by Pearson’s Correlation
Coefficient

Pearson’s correlation coefficient (PCC) is used to calculate how strong two proteins
interact in the rawPPI network.After PCA, each protein has a dense representation vector
Wi = (ω1, ω2, . . . ωn′). So the strength of two interacting proteins vi = (x1, x2, . . . xn′)
and protein vj = (y1, y2, . . . yn′) is calculated by PCC. The value of PCC ranges from
−1 to 1, if PCCvi, vj is a positive value, it means that the relationship between protein
vi and vj is positive. On the contrary, if PCCvi, vj is a negative value, it means that the
relationship between protein and vj is negative.

Finally, the weight of edges in the network is Weight
(
vi, vj

) = PCC
(
vi, vj

)
. So far,

the raw PPI network has been weighted by integrating three types of biological data.
Figure 1 plots the workflow of the weighting process.

2.3 Identification of Essential Proteins Based on Network Representation
Learning and XGboost

In order to identify essential proteins more correctly, it is necessary to learn better topo-
logical features for proteins. In this study, we use node2vec [42] to learn the topological
features. Node2vec techniquewas developed in 2016, it is inspired byword2vec [43] and
DeepWalk [44]. It projects every node in the network to a low-dimensional space vector
based on unsupervised learning. Node2vec defines two parameters p and q that are used
to balance the depth-first search (DFS) and the breadth-first search (BFS), which can
preserve the local neighbor node relations and global structure information.

After getting topological features of proteins, the next step is choosing a suitable
classifier for essential protein prediction. XGBoost (eXtreme Gradient Boosting) [45] is
one of the best available machine learning methods. XGBoost algorithm uses a simple
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Fig. 1. A diagram of the weighted PPI network construction. The raw protein representation
vector is constituted by using RNA-Seq data, subcellular location, and orthologous information.
In order to obtain a better representation, we use the PCA technique to reduce the dimension of
the raw protein representation vector. Finally, we weight the PPI network by PCC based on the
dense representation vector and the raw PPI network.

model to fit the data that can get a general performance. Then, simplemodels are added to
the whole XGBoost model constantly. Until the whole model approaches the complexity
of the sample data, the performance of this model is best to identify essential proteins.
Figure 2 plots the whole workflow.

Fig. 2. A diagram of the essential proteins identifying. We use node2vec to extract the protein
features, and then use the features we extract as the input of XGBoost to classify proteins.
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3 Results

3.1 Comparisons with Current Topology-Based Methods

To validate the performance of Ess-NEXG, we compared Ess-NEXG with some current
topology-based methods (BC, CC, EC, IC, LAC, NC, SC, PeC, SPP, WDC, RSG, NIE).
In these methods, every node has a score according to corresponding score function.
Because there are 1285 essential proteins in the PPI network, we select the top 1285
proteins as candidate essential proteins, and the rest 4216 proteins are candidate non-
essential proteins. According to the true label, we calculated the accuracy, precision,
recall, and F-score of the 12 computation-based methods. The results of Ess-NEXG and
other topology-based methods are shown in Table 1.

Table 1. Comparison of the values of accuracy, precision, recall, and F-score of Ess-NEXG and
other topology-based methods.

Methods Accuracy Precision Recall F-score

BC 0.728 0.411 0.383 0.396

CC 0.670 0.278 0.259 0.268

EC 0.732 0.420 0.391 0.405

IC 0.746 0.454 0.423 0.438

LAC 0.763 0.492 0.458 0.475

NC 0.762 0.490 0.457 0.473

SC 0.732 0.420 0.391 0.405

PeC 0.758 0.480 0.447 0.463

SPP 0.706 0.561 0.479 0.516

WDC 0.758 0.481 0.448 0.464

RSG 0.758 0.475 0.518 0.495

NIE 0.757 0.473 0.528 0.499

Ess-NEXG 0.819 0.600 0.580 0.590

From Table 1, we can see that all assessment metrics obtained by Ess-NEXG are
higher than other topology-based methods. According to the results of these topology-
based methods, we find that the accuracy of LAC, the precision of SPP, the recall of NIE,
and the F-score of SPP are the highest values in these four assessment metrics among
these topology-based methods. Compare with the four assessment metrics, Ess-NEXG
improves the performance by 7.3%, 7.0%, 9.8%, and 14.3% respectively. In summary,
the results indicate that Ess-NEXG outperforms other topology-based methods.

3.2 Comparisons with Other Machine Learning Algorithms

In Ess-NEXG, we choose the XGBoost classifier to identify essential proteins. In order
to validate the performance of Ess-NEXG, we compared Ess-NEXGwith other machine
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learning algorithms including support vectormachine (SVM),NaïveBayes, and decision
tree, random forest [46], AdaBoost [47]. To ensure equitably, we also use the same
input features of proteins and assessment metrics. The results are shown in Table 2.
From Table 2, we can see that Ess-NEXG has the best performance. Figure 3 plots the
ROC curve of Ess-NEXG and other machine learning algorithms. We can see that the
ROC curve of Ess-NEXG is significantly higher than other machine learning algorithms.
Table 2 and Fig. 3 show that Ess-NEXG is better than other machine learning algorithms.

Table 2. Comparison of the values of accuracy, precision, recall, F-score, and AUC of Ess-NEXG
and other machine learning algorithms.

Model Accuracy Precision Recall F-score AUC

SVM 0.70 0.38 0.62 0.47 0.73

Naïve
Bayes

0.79 0.50 0.38 0.43 0.72

Decision
tree

0.71 0.35 0.40 0.37 0.62

Random
forest

0.80 0.58 0.26 0.36 0.71

AdaBoost 0.79 0.51 0.29 0.37 0.71

Ess-NEXG 0.82 0.60 0.58 0.59 0.82

Fig. 3. ROC curves of Ess-NEXG and other machine learning algorithms.
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4 Conclusions

Essential proteins are very important proteins in the life process, which can help us
understanding life activities in living organisms. The identification of essential pro-
teins is helpful in drug design and disease prediction. In this paper, we propose a novel
computational framework to identify essential proteins in the PPI network. Previous
studies have shown that the noises in the PPI network affect the performance of essen-
tial protein identification. In order to reduce the effects of noises in the PPI network,
we propose a weighted method that integrates RNA-Seq data, subcellular localization
information, and orthologous information. After obtaining the protein representation
vector by using PCA technique, PCC is used to calculate the edge weights in the PPI
network. Then node2vec is applied to extract topological features from the weighted
PPI network. Finally, the topological features are fed into XGboost model to identify
essential proteins. In order to evaluate the performance of Ess-NEXG, we compared
it with current topology-based methods. The results show that Ess-NEXG outperforms
them. In addition, we also compared Ess-NEXG with machine learning algorithms to
show effectiveness. While Ess-NEXG outperforms other computational models, it still
has some limitations. The biggest limitation is that we have to collect biological data for
each new species, which is expensive and cumbersome. In the future, we would further
improve the performance of essential protein prediction by using powerful deep learning
techniques [48] and useful biological information [49].
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